
Location Privacy via Actively Secure Private Proximity Testing

Janus Dam Nielsen, Jakob Illeborg Pagter, and Michael Bladt Stausholm

The Alexandra Institute, Aarhus, Denmark

Email: {janus.nielsen,jakob.i.pagter,michael.stausholm}@alexandra.dk

Abstract—We present a solution which improves the level
of privacy possible in location based services (LBS). A core
component of LBS is proximity testing of users. Alice wants
to know if she is near to Bob (or generally some location).
The presented solution support private proximity testing and
is actively secure meaning it prevents a number of attacks
possible in existing protocols for private proximity testing. We
demonstrate that the improved security provided only implies
a factor of two penalty on execution time compared to an
existing passively secure protocol.

We also provide a security analysis and discuss the relevance
of secure multiparty computation for location based services.

Keywords-Social network services, Privacy, Security, Encryp-
tion, Cryptographic protocols

I. INTRODUCTION

The geographic location of a person is valuable infor-

mation in online social networks since it transmits a lot

of social information. The places we visit describes who

we are in an even more direct way than any statements

of political views, taste, rants, family, experience, particular

news stories, books we (claim) to read, etc. typically found

on social networks, because we actually took the time and

effort to physically move us there. In contrast to the little

effort involved in a Twitter message or a Facebook update.

Based on the locations visited by a person one may actually

deduce some of the other characteristics like where do we

shop for what, who do we like to spend time with (and also

not), or even political views by attending political meetings.

The geographic location can hence be an important and

valuable aspect of a persons social life. And as such should

be treated with caution, since disclosing it might have un-

foreseen consequences. Visiting certain locations or persons

may be seen as offensive or socially unacceptable to some

of your online “friends”. You might not want to share with

your boss that you are going for a job interview in another

organization.

There exists a number of location based services (LBS)

providing location sharing. This includes Google Latitude,

Facebook places, Foursquare, Loopt, and a large number of

smartphone applications.

In recent years there has been considerable research on

privacy in LBS. The fundamental problem seem to be

that few people would like even their closest friends to

know their location all the time, yet will allow distant

acquaintances to know their location some of the time.

Many existing solutions allows the user to compose a

privacy policy for the sharing of location based on different

policy elements like providing access to certain friends or

only disclosing your location at certain places. Some policy

elements can easily be realized without compromising the

location. Others however, are easiest realized by sharing the

location with the LBS provider, which then enforces the

policy.

Besides the privacy threat from friends, acquaintances,

and potentially complete strangers, it is clear that any LBS

based upon a centralized server has another potentially large

privacy problem, namely the massive collection of data. It

will typically be quite easy to deduce the actual identities of

different users. As demonstrated by the case of Malte Spitz1.

In this work we focus on privacy features/principles,

where the decision to divulge your location is a function

of information you have combined with information others

have - in particular, information that you may not want

to disclose unless the decision to disclose your location is

positive. The most basic feature we can think of is proximity

testing, where the decisions to disclose your position is based

on your position itself. The basic idea is that if you are

”close” to a friend, her knowing your location becomes more

relevant because you are more likely to meet physically (or

can in fact, arrange physical meetings.).

Our method is based on secure multiparty computation

(SMC), which allows a number of parties to jointly compute

some function in such a manner that each party does not

learn the inputs of the other parties. We use this to prevent

two parties from learning the other party’s location unless

they are in proximity to each others. And also to prevent

third parties like the provider of the LBS to learn the

location. All of this with strong cryptographic guaranties.

In the next section we present a security analysis of the

problem domain including a discussion on the applicability

of SMC. Section III discuss proximity testing. In Section IV

we describe the cryptographic protocol which computes

if two users are in proximity. We evaluate and discuss

the protocol by benchmarking a concrete implementation

on actual devices in Section V. A description of related

work is given in Section VI, and Section VII presents our

conclusions along with future work.

1http://www.zeit.de/datenschutz/malte-spitz-data-retention



II. SECURITY ANALYSIS

A natural solution for ensuring privacy features is of

course to use a trusted server, however as a consequence of

the centralized server threat it is natural to look for solutions,

in which the server does not learn your location or other

private information. The simplest way to achieve this, is to

simply not involve a server. Therefore the problem reduces

to two entities, wishing to decide if the distance between

them is lower than a treshold, without revealing their actual

location unless it is below the threshold. The canonical

way to solve this problem is using the ideas behind Yao’s

millionaires problem [1]: Two party computation, a special

case of SMC. In the following we briefly discuss how to

apply SMC to some other privacy features in LBS—besides

proximity testing—for which a server based solution would

otherwise be an obvious choice.

Plausible Deniability (PD): An important feature for loca-

tion based service privacy is PD [2]. PD is the ability to make

a white lie about your position without others knowing about

it. PD is in itself not something which can be adressed using

SMC, but if you want to support it, you cannot automatically

reveal your location. For proximity testing, it means setting

your threshold to zero (or so low that people would meet

you physically anyway).

Access Control (Who-When-Where): The authors in [3]

suggest that a user should be able to specify an access

control policy based on users and groups of users, times

and places. At the same time they follow the advice of [4] to

provide auditing functionality, so that the users can see who

has requested access and why it was granted or rejected. One

could argue that the principle of PD could be relevant here

in reverse, meaning that if I request access to your location

and my request is denied, that you do not learn this, as the

requester could find it embarrassing or similar. In this case

an SMC-based lookup in the access control table becomes

relevant.

Access control based on places, it is a feature that can

easily be answered without SMC if the LBS works in peer-

2-peer fashion. However, using a centralized server which

you tell your location when you are at one of the predefined

places could make for a more efficient solution. However,

this would make it harder to enforce PD in a granular

fashion. In this another user could query your location from

the server who would then perform SMC with you.

Location Entropy (LE): In [5] LE is described as an

important design principle for LBS’s. The idea is that, the

more unique visitors are sighted at a given location, the

more likely people are to be willing to reveal that they are

at this location. Computing the LE of a location requires

a centralized server that register sightings including some

kind of unique identifier. In [5] they use a study with

500+ users, but numbers on popular LBS’s would be much

bigger. Consequently, it is not practical to use SMC with

participation of all the clients to put the central server out of

the equation. Improved privacy could be achieved by using

the approach of [6], where a single server is replaced by a

network of servers. Of course, this requires that one can find

servers that are likely not to collude.

In general, SMC can be used to replace a trusted central-

ized server, used to solve any problem, not least location

based. Of course, as when using a trusted server, it will rely

on users not making the LBS work on fake location data. A

problem which is out of scope for this paper.

In terms of the more low-level cryptographic security

requirements, it is important to distinguish between (at least)

passive and active security. They have the following informal

characteristics:

Passive security guarantees a protocol does not leak

information to an adversary who might try to learn another

party’s information, given the messages seen in the protocol.

However, the adversary is assumed not to deviate from the

protocol.

Active security allows for the adversary to behave arbi-

trarily during the protocol. In order for a protocol to be

active secure, this behaviour must not make the protocol

leak information or influence the result for a honest user.

A more formal definition of passive and active security

can be found in [7] chapters 7.2.2 and 7.2.3. In the case of

a proximity testing protocol, passive security is achieved if

we can guarantee that if both parties follow the protocol,

they will only learn if they are in proximity of each other

and nothing else.

Without active security a number of attacks are available,

including, but not limited to:

1 Most protocols start by having both parties sending

some input to the other party. At this step a malicious party

could wait until it receives the honest party’s input and use

this input to compute its own. This can in some cases allow

the malicious party to choose the outcome of the protocol,

e.g. if the malicious party simply copied the honest party’s

input, it would guarantee a proximity test would always

result in a match.

2 At some point both parties will have to perform some

operations on the inputted encryptions. At this point a

malicious party can send some specially crafted message.

This might change the result, i.e. making the honest party

believe they are in proximity, even if they are not.

3 Finally both parties have to participate to obtain the

result, at this point a malicious user could send some garbage

message, preventing the honest party from learning the

proper result, without affecting his own result.

As we, in the general case, consider both the centralized

server as well as peers/friends we communicate with to be

potentially dishonest, it should be clear that active security is

preferable over passive security for location based services.



III. PROXIMITY TESTING

In this section we analyse different ways to compute the

proximity of Alice and Bob in terms of performance and

accuracy.

The obvious solution would be to calculate the distance

between their positions and decide if the distance is lower

than some threshold. This is fairly simple and also gives a

very accurate answer. Given the positions (ax, ay), (bx, by),
the computation can be done using either trigonometric

functions (the Haversine formula) or by disregarding the

Earths curvature (thereby loosing accuracy) and simply

calculating the difference (

√

(ax − bx)
2
+ (ay − by)

2
).

In principle, it is possible to perform either of the

two algorithms privately using SMC. However, computing

trigonometric operations, square roots, or comparisons using

SMC is prohibitively expensive [6]. Thus, another and less

ressource intensive solution is needed.

The position of Alice along with a given range defines a

circle, and the problem is to test if Bob is inside or outside

the circle. Another solution is to approximate the area of the

circle with cells of a grid. A position is then mapped to a cell,

having a unique identifier, in the grid. In this way, we can

decide whether Alice is close to Bob by comparing the cell

Bob is in, to the cells approximating the area around Alice.

Using this approach, proximity testing can be reduced to set

inclusion as noted by others [8]–[10]. Set inclusion is more

tractable in terms of performance for techniques like SMC.

In our approach we approximate the circle with 9 (roughly)

square cells and do set inclusion by comparing the unique

identifier of the cell Bob is in to the unique identifiers of

the nine cells around Alice.

The tradeoff is that grid based approaches are not as

accurate as directly computing the distance. I.e. if Alice is

near to Bob but in a different cell, then they may be deemed

far apart, resulting in a false negative. Similarly, if Alice and

Bob are in the opposite corners of the same (large) cell, and

thus far apart, they are still deemed close since they are

in the same cell, resulting in a false positive, as shown in

Figure 1a.

One way to improve the accuracy is to use more and

smaller cells to approximate the area of the circle, as seen

in Figure 1b. This approach reduces the amount of false

negatives/positives. However, it is not perfect. Assuming that

we use nine square 1x1 km cells to approximate the circle,

then it is guaranteed that a person less than 1 km away is

always determined to be nearby. However, a person being up

to
√
8 km. away, may sometimes be determined to be nearby

and other times not, all depending on the precise positions

in the cells.

The set of cells can be constructed in a number of ways,

depending on what is meaningful in the given application. In

some cases it might be useful to distinguish between floors in

a building or the border between countries. If only distance

(a) The problem with cells (b) Approximating a circle

Figure 1. The circle in 1a shows the range in which Bob wishes to share
his position, while the gray area shows the area covered by his current cell.
Depending on Alice’s exact position, there might be both false positives
(the white dot) and false negatives (the black dot). 1b shows how increasing
the number of cells can be used to both approximate a circle.

matters, the plane can be split into cells in a number of

ways, using squares, hexagons [8], as well as other shapes,

or even layers of grids [10]. While all grid based solutions

are inaccurate, certain shapes can approximate a circle using

less cells than others.

Since our protocol is oblivious to the shape of the cell,

we found that the simplests way to split the Earth into cell,

is by using the standard latitude and longitude system. The

unique id of a cell can, given a persons exact location as

latitude and longitude, be computed as the concatenation

of the coordinates rounded to the nearest tenth of a degree

minute. A cell spans 2 longitude degrees for each latitude

degree making the cells roughly quadratic in the test area.

This creates a grid of (nearly) square cells, roughly 130x100

m in size. Even smaller cells can be obtained by rounding

to the nearest degree minute, second or fraction of a second.

This approach makes the cell sizes vary depending on the

latitude, i.e. a cell will be 3 - 4 times larger in Kenya than

in Siberia. This is because the absolute length of one degree

of longitude difference becomes shorter the further you get

from the Equator, whereas one degree of latitude difference

always has roughly the same length. This implies that, if

Alice and Bob are x m apart and standing on the equator,

they are considered nearby. However, if they move straight

north at the same speed, they will eventually be considered

far apart, eventhough the distance between them remains x

m. This is not a problem since the application is supposed

to be used around the same latitude.

The size of cells can be made constant by using the

protocol to test if the position is close to Equator, and then

resize the cells accordingly, e.g. 1 degree latitude to 1 degree

longitude near the Equator and 1 to 3 in Siberia.

IV. AN ACTIVELY SECURE 2-PARTY PROTOCOL FOR

EQUALITY TESTING

The proximity of friends is computed by computing the

pairwise proximity of the party and each of his friends. The

core of the protocol only involves two parties in this way.



The basic idea behind of the core protocol is to first decide

if two parties are nearby. This is the case if they are in

the equal cells. Equality of cells is done by computing the

difference and deciding if it is zero. If two parties are close,

they can exchange their exact coordinates using a secure

channel, otherwise the protocol stops.

We present an actively secure protocol based on the

homomorphic ElGamal cryptosystem [11] combined with a

number of zero-knowledge proofs.

To ensure that all parties must participate in the decryption

of a ciphertext, a shared private key with a common public

key is used.

We setup the cryptosystem as follows:

• Setup: We choose G to be a cyclic group of prime

order q, with generator g, where the Decisional Diffie-

Hellman (DDH) [12] problem is assumed to be hard

(and thereby ensuring the security of the system).

• Private key: Each party pi chooses some random ki ∈
Zq as private key share. Where Zq is the set of natural

numbers from and including zero and up to but not

including q

• Public key: Given their private key share ki, both parties

compute and publish hi = gki ∈ G. Each party then

computes the common public key as h =
∏

hi =
g
∑

ki ∈ G

To encrypt a cell id zi ∈ Zq , it is first transformed into

mi = gzi , before the ciphertext c ∈ G×G, is computed as

c = (gr,mih
r) = (gr, gzihr) where r ∈ Zq is chosen at ran-

dom. The transformation changes the ElGamal cryptosystem

from being multiplicatively homomorphic (i.e. if you multi-

ply two ciphertexts, you get a new encryption of the product

of the plaintexts) to being additively homomorphic (i.e. if

you multiply two ciphertexts, you get a new encryption of

the sum of the zones) with regard to the encoded zones.

To decrypt a given ciphertext c = (α, β), each party

computes and sends a decryption share di = α−ki , using

their private key share ki. Given all the decryption shares, the

result is obtained as mi = gzi = β
∏

di = βα−

∑
ki . Note

that the decryption scheme produces mi = gzi . Obtaining

zi given gzi is assumed to be hard for the group G, however

we are only interested in the case where zi = 0 i.e. gzi = 1.

The equality testing protocol proceeds as follows for two

parties p1 and p2, each with cell ids z1, z2 ∈ Zp:

1) Party pi create and send encryptions ci = (gri , gzihri)
2) Both parties computes the difference locally:

c = c1c
−1
2

=
(

gr1g−r2, gz1hr1g−z2h−r2
)

=
(

gr1−r2 , gz1−z2hr1−r2
)

Given c = (α, β), party pi compute and send

ci = (αsi , βsi) for some random si ∈ Zq

3) After receiving cj = (αsj , βsj ), party pi compute

c′ = (αsjsi , βsjsi) using the previously generated

si where j 6= i. The ciphertext c′ is then jointly

decrypted, yielding the result g(z1−z2)s1s2 . This will

either be 1 if z1 is equal to z2, i.e. (g0s1s2 = 1), or g

raised to some unknown power

Note that raising the encryptions to si in steps 2 and 3

are necessary to ensure privacy. At step 2, c will be an

encryption of gz∆ , where z∆ is the difference in cell ids. The

difference can be decrypted at this point, which would leak

information. Although finding z∆ given gz∆ is considered a

hard problem in the group G, the possible values for z∆ are

limited by the number of possible cells and performing an

exhaustive search might therefore be feasible2. By following

step 2 and 3, the parties both get to mask any nonzero

difference using some random value of their choosing. In

order for a malicious party to obtain information about the

difference of the positions, he would have to guess the

value used by the honest party. However, the malicious party

would not have any way to validate these guesses, perfectly

hiding the difference.

The protocol above offers passive security, but as de-

scribed in Section II active security is required. This is

achieved by adding a number of zero knowledge proofs of

knowledge (ZKPoK). ZKPoKs allows a person to prove he

or she knows some fact, without revealing information about

the fact [13].

One example of such a proof, is Schnorr’s protocol [14].

Given a prover and verifier, both with knowledge of some

values g, h = gx, Schnorr’s protocol allows the prover to

prove it knows x, without revealing x to the verifier. This

is done by having the prover commit to some value r by

sending a = gr to the verifier. The verifier then sends some

random challenge e back. The prover finally computes and

sends the reply z = r + ex to the verifier, who verifies

gz = ahe. The trick is, that the prover can only compute a

valid reply to e, iff it knows both x and r. This way, the

verifier learns nothing about x, but since the prover could

produce a valid reply, the prover must know x.

In addition to the encrypted values sent in step 1, the

parties also performs a ZKPoK, proving they know the

encrypted value and the randomness used to produce it. This

prevents attack 1 from Section II, because a malicious party

cannot just copy the value received.

At step 2, the parties prove that they know si. The proof

use the result from the previous step as common input to

both prover and verifier. By proving knowledge of si, they

also prove they haven’t replaced the encrypted difference

with some encryption of their choosing. This makes the

parties perform the computations like they are supposed to

preventing attacks of type 2 mentioned in Section II.

Finally in the decryption phase, the parties prove that the

decryption share is produced using their own key. As in

2Earths surface is roughly 500 mio. square km. By making a few
assumptions on the other party’s location, this can be drastically lowered.



step 2, this also verifies that the decryption share is produced

from the result of the previous round. This prevents the third

type of attack, where a malicious party learns the correct

result and makes the honest party learn an erroneous result.

The proofs are fairly simple on their own, but become

quite lengthy to describe when used as subcomponents and

are therefore left out. The used proofs are slightly modified

versions of Schnorr’s protocol, Okamoto’s protocol [15]

and Chaum-Pedersens [16] protocol for proving equality of

discrete logarithms.

The program is linear and the execution time mainly

depends on the size of group. The protocol communicates

via 6 message sent in 3 rounds.

V. EVALUATION

To test what level of accuracy and security is feasible

for handheld devices, a prototype implementation was made

for Android devices. The prototype can use indoor position-

ing, using wifi fingerprint of nearby hotspots, or outdoor

positions using the built-in GPS. Indoor positioning uses

an adjacency matrix to describe the grid layout, while the

outdoor positioning computes the current cell as described

in Section III.

The protocol was tested on a setup using a HTC Desire

and a Google Nexus phone. Both having a 1 GHz processor

and communicating on a WiFi connection. Nor the protocol

or the security attributes assumes any properties of the

network, thus it could as well have been i.e. 3G, Edge or

Bluetooth. The transport protocol will of cause impact the

execution time.

Since the level of accuracy can be increased by using a set

of cells closely approximating a circle (as in Figure 1b). We

have benchmarked three different configurations using 9, 25

and 49 comparisons, in order to investigate what accuracy is

practical. The results were 2720 ms, 6061 ms and 11656 ms

respectively. The measurements have been done with a fixed

key size of 160 bits, using a group size of 1248 bits. And

averaged over 10 executions of the protocol. The parties

spend around 1 sec to generate a session key before the

comparisons, this can be eliminated by having all friends

precompute their shared/common keys, and is thus not part

of the timings.

As we would expect increasing accuracy comes with a

cost. While 12 seconds for evaluating proximity might be

acceptable in a situation with only a single friend, a user

might often want to run the protocol with multiple friends.

In order for the application to be able to provide fresh

positions, the protocol must be run at fairly short intervals.

That means that the level of accuracy that 49 cells would

give, is most often infeasible with current mobile hardware.

However, using a configuration using few cells is very much

feasible. We found that using 9 comparisons and initiating

the protocol with 1 minute intervals seems appropriate for

10 to 20 friends. This results in an average CPU workload

of 30 to 60%. Although the timings indicate there would

be enough CPU time for having more friends and/or higher

accuracy/frequency, keep in mind that handheld devices are

limited by battery, so CPU power consumption does become

an issue. The level of accuracy offered by nine cells is

definitely sufficient to be of practical use in situations like

meetups at concerts or sport events.

Our (grid) Our (hexagons) NTLHB (hexagons)

Passive 1.4 s/friend 0.46 s/friend 0.46 s/friend
Active 2.7 s/friend 0.9 s/friend -

Table I
COMPARISON OF OUR PROTOCOL TO THE NTHLB [8] PROTOCOL.

Using cells of another shape, might require less compar-

isons for an equal (or better) level of accuracy. E.g. the

protocols described in [8] uses hexagons and only needs 3

comparisons for their desired level of accuracy.

We made a passively secure version of our protocol

by removing the zero-knowledge proofs in order to better

compare our results with the result in [8]. The comparison

is shown in Table I with execution times for the active and

passive versions of our protocol for a square (9 comparisons)

and hexagonal (3 comparisons) grid layout. The passive

version is only a factor 2 faster than the active version. And

just as fast as the one in [8]. We would expect a speedup

considering the more powerful CPUs used in our setup, but

this can be explained by our benchmark including network

latency, which is excluded in [8].

The confidentiality of the encrypted positions can be

extended from a few years to a couple of decades by using an

encryption key of 192 bits (the group will then be 1776 bits).

Resulting in a 25% increase in the execution time (3850 ms)

for nine comparisons.

The implementation supports gracefull degradation of

service. If a user has too many friends compared to the

computing power of the mobile device. Then, the application

will still attempt to execute the protocol. However, other

users may perceive the device as unresponsive, thereby

creating false negatives, eventhough they are nearby.

VI. RELATED WORK

We improve on the previous work [8] by adding active

security. Our protocol only incurs a factor 2 slowdown

compared to [8] when comparing the raw cryptographic

primitives under the same conditions. We also map locations

on the Earth into a grid. The choice of grid influences the

accuracy and number of comparisons needed. We could also

have chosen to use layers of grids similar to [10], and have

the parties negotiate which layer to use for comparison, and

so enabling individual distance preferences. Our solution

does not reveal to the LBS if two users are in proximity as

opposed to both protocols in [9] where the LBS can compare



the values send to the LBS. Also the LBS can collude with

Bob to find Alices position or tell Alice that she is far apart

from Bob while they are actually nearby. These attacks are

not possible in our solution.

VII. CONCLUSION AND FUTURE WORK

We have designed and implemented an actively secure

protocol for proximity testing. We have shown that it is

feasible to execute the protocol on contemporary mobile

devices, if the set of friends is not more than 10 or 20.

Which is typical in the scenario we target. Our protocol is

only a factor of two slower than an existing passively secure

solution [8].

Processors in mobile devices seems to become more and

more powerful and the numbers of cores increases. This

will have a beneficial impact on the number of friends the

protocol can handle in reasonable time, because the protocol

is CPU bound and parallelises well. The main computational

bottleneck is modular integer exponentiation. Thus, a more

efficient implementation will give the highest increase in the

practical usefulness of the protocol.

ACKNOWLEDGMENT

The authors would like to thank Gert Mikkelsen and

Thomas Jakobsen for fruitful discussions. And thanks to

the anonymous reviewers for suggestions on improving the

paper.

REFERENCES

[1] A. C.-C. Yao, “How to generate and exchange secrets
(extended abstract),” in Foundations of Computer Science.
IEEE, 1986, pp. 162–167.

[2] G. Hsieh, K. P. Tang, W. Y. Low, and J. I. Hong, “Field
deployment of imbuddy : A study of privacy control and
feedback mechanisms for contextual im,” in Ubicomp, ser.
Lecture Notes in Computer Science, J. Krumm, G. D. Abowd,
A. Seneviratne, and T. Strang, Eds., vol. 4717. Springer,
2007, pp. 91–108.

[3] N. M. Sadeh, J. I. Hong, L. F. Cranor, I. Fette, P. G. Kelley,
M. K. Prabaker, and J. Rao, “Understanding and capturing
people’s privacy policies in a mobile social networking appli-
cation,” Personal and Ubiquitous Computing, vol. 13, no. 6,
pp. 401–412, 2009.

[4] G. Iachello, I. E. Smith, S. Consolvo, G. D. Abowd,
J. Hughes, J. Howard, F. Potter, J. Scott, T. Sohn, J. High-
tower, and A. LaMarca, “Control, deception, and communica-
tion: Evaluating the deployment of a location-enhanced mes-
saging service,” in Ubicomp, ser. Lecture Notes in Computer
Science, M. Beigl, S. S. Intille, J. Rekimoto, and H. Tokuda,
Eds., vol. 3660. Springer, 2005, pp. 213–231.

[5] E. Toch, J. Cranshaw, P. H. Drielsma, J. Y. Tsai, P. G.
Kelley, J. Springfield, L. F. Cranor, J. I. Hong, and N. M.
Sadeh, “Empirical models of privacy in location sharing,”
in UbiComp, ser. ACM International Conference Proceeding
Series, J. E. Bardram, M. Langheinrich, K. N. Truong, and
P. Nixon, Eds. ACM, 2010, pp. 129–138.

[6] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler,
T. Jakobsen, M. Krøigaard, J. D. Nielsen, J. B. Nielsen,
K. Nielsen, J. Pagter, M. I. Schwartzbach, and T. Toft, “Secure
multiparty computation goes live,” in Financial Cryptogra-
phy, ser. Lecture Notes in Computer Science, R. Dingledine
and P. Golle, Eds., vol. 5628. Springer, 2009, pp. 325–343.

[7] O. Goldreich, Foundations of cryptography. II. Cambridge:
Cambridge University Press, 2004, basic Applications.

[8] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and
D. Boneh, “Location privacy via private proximity testing,”
in NDSS. The Internet Society, 2011.

[9] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and S. Jajodia,
“Privacy in geo-social networks: proximity notification with
untrusted service providers and curious buddies,” VLDB J.,
vol. 20, no. 4, pp. 541–566, 2011.

[10] L. Siksnys, J. R. Thomsen, S. Saltenis, and M. L. Yiu, “Private
and flexible proximity detection in mobile social networks,”
in Mobile Data Management, T. Hara, C. S. Jensen, V. Kumar,
S. Madria, and D. Zeinalipour-Yazti, Eds. IEEE Computer
Society, 2010, pp. 75–84.

[11] T. E. Gamal, “A public key cryptosystem and a signature
scheme based on discrete logarithms,” IEEE Transactions on
Information Theory, vol. 31, no. 4, pp. 469–472, 1985.

[12] D. Boneh, “The decision diffie-hellman problem,” in ANTS,
ser. Lecture Notes in Computer Science, J. Buhler, Ed., vol.
1423. Springer, 1998, pp. 48–63.

[13] U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge proofs of
identity,” J. Cryptology, vol. 1, no. 2, pp. 77–94, 1988.

[14] C. P. Schnorr, “Efficient identification and signatures for
smart cards,” in Proceedings on Advances in cryptology,
ser. CRYPTO ’89. New York, NY, USA: Springer-Verlag
New York, Inc., 1989, pp. 239–252. [Online]. Available:
http://dl.acm.org/citation.cfm?id=118209.118231

[15] T. Okamoto, “Provably secure and practical identification
schemes and corresponding signature schemes,” in
Proceedings of the 12th Annual International Cryptology
Conference on Advances in Cryptology, ser. CRYPTO ’92.
London, UK: Springer-Verlag, 1993, pp. 31–53. [Online].
Available: http://dl.acm.org/citation.cfm?id=646757.705529

[16] D. Chaum and T. P. Pedersen, “Wallet databases with
observers,” in Proceedings of the 12th Annual International
Cryptology Conference on Advances in Cryptology, ser.
CRYPTO ’92. London, UK: Springer-Verlag, 1993, pp.
89–105. [Online]. Available: http://dl.acm.org/citation.cfm?
id=646757.705670


