
Growing a Syntax

Eric Allen
Sun Microsystems
eric.allen@sun.com

Ryan Culpepper ∗

Northeastern University
ryanc@ccs.neu.edu

Janus Dam Nielsen ∗ †

Aarhus University
jdn@brics.dk

Jon Rafkind ∗

University of Utah
rafkind@cs.utah.edu

Sukyoung Ryu
Sun Microsystems

sukyoung.ryu@sun.com

Abstract
In this paper we present a macro system for the Fortress program-
ming language. Fortress is a new programming language designed
for scientific and high-performance computing. Features include:
implicit parallelism, transactions, and concrete syntax that emulates
mathematical notation.

Fortress is intended to grow over time to accommodate the
changing needs of its users. Our goal is to design and implement
a macro system that allows for such growth. The main challenges
are (1) to support extensions to a core syntax rich enough to em-
ulate mathematical notation, (2) to support combinations of exten-
sions from separately compiled macros, and (3) to allow new syntax
that is indistinguishable from core language constructs. To emulate
mathematical notation, Fortress syntax is specified as a parsing ex-
pression grammar (PEG), supporting unlimited lookahead. Macro
definitions must be checked for well-formedness before they are
expanded and macro uses must be well encapsulated (hygienic,
composable, respecting referential transparency). Use sites must
be parsed along with the rest of the program and expanded directly
into abstract syntax trees. Syntax errors at use sites of a macro must
refer to the unexpanded program at use sites, never to definition
sites. Moreover, to allow for many common and important uses of
macros, mutually recursive definitions should be supported.

Our design meets these challenges. The result is a flexible sys-
tem that allows us not only to support new language extensions, but
also to move many constructs of the core language into libraries.
New grammar productions are tightly integrated with the Fortress
parser, and use sites expand into core abstract syntax trees. Our im-
plementation is integrated into the open-source Fortress reference
interpreter.To our knowledge, ours is the first implementation of a
modular hygienic macro system based on parsing expression gram-
mars.

∗ Work partially done while visiting Sun Microsystems Laboratories.
† Supported by the SIMAP Project under the Danish Strategic Research
Council NABIIT-program.

Copyright is held by Sun Microsystems, Inc.
FOOL ’09 24 January, 2009, Savannah, Georgia, USA.
ACM .

1. Introduction
A programming language can be thought of as a vocabulary of
words and a set of rules that define how to combine words into
meaningful constructs [19]. One goal of language design is to cre-
ate a vocabulary and a set of rules that allow the programmer to
express ideas clearly and concisely. But the set of concepts needed
over the lifetime of a programming language is difficult to an-
ticipate and is often dependent on the development of new sys-
tems that programs must interact with (for example, new domain-
specific languages, new programming platforms, new virtual ma-
chines, etc.).

The Fortress programming language is intended to grow over
time to accommodate the changing needs of its users [4]. One
mechanism to allow for such growth is syntactic abstraction: It is
possible to add new syntactic constructs to the language in libraries,
defining new constructs in terms of old ones. In this manner, the
language can gracefully adapt to unanticipated needs as they be-
come apparent. Parsing of new constructs can be done alongside
parsing of primitive constructs, allowing programmers to detect
syntax errors in use sites of new constructs early. Programs in
domain-specific languages can be embedded in Fortress programs
and parsed along with their host programs. Moreover, the defini-
tion of many constructs that are traditionally defined as core lan-
guage primitives (e.g., for loops) can be moved into Fortress’ own
libraries, thereby reducing the size of the core language.

Designing such a syntactic abstraction mechanism for Fortress
is hard. In part, this difficulty is due to our design goal of growabil-
ity: New syntax should be indistinguishable from old syntax from
the user’s perspective. This requirement imposes several constraints
on Fortress macros: Macro definitions must be checked for well-
formedness before they are expanded; otherwise syntax errors in
the definition of a macro might not be exposed until the macro is
used. Macro uses must be well encapsulated (hygienic, compos-
able, respecting referential transparency); otherwise it would be im-
possible to safely use a macro without understanding the innards of
its implementation. Use sites must be parsed along with the rest of
the program and expanded directly into abstract syntax trees; oth-
erwise new syntax would be distinguishable from old in the sense
that use site errors of new syntax are not signaled alongside those
of old syntax. Similarly, syntax errors at use sites of a macro must
refer to the unexpanded program at use sites, never to definition
sites. And because many desirable macro definitions require recur-
sion, Fortress macros must support recursive and mutally recursive
definitions.

Difficulties also arise from another design goal of Fortress: The
concrete syntax of Fortress is designed to emulate mathematical

g1 = 〈 1, 2, 3, 4, 5 〉
g2 = 〈 6, 7, 8, 9, 10 〉
for i ← g1, j ← g2 do

println “(” i “, ” j “)”
end

Figure 1. A parallel for-loop in Fortress

g1.loop(fn i ⇒
g2.loop(fn j ⇒

println “(” i “, ” j “)”))

Figure 2. A desugared version of the for-loop in Figure 1

notation as closely as possible. For example, operator precedence
in Fortress is not transitive. Moreover, juxtaposition itself is treated
as a mathematical operator, whose meaning is overloaded based
on the types of the arguments. Juxtaposition of numeric variables
denotes multiplication, as in the expression:

a(m + n)

Juxtaposition of a function with an argument denotes function
application, as in the expression:

sin x

It has been the experience of the Fortress design team that defin-
ing a grammar with these properties is most naturally done in the
context of a formalism supporting unlimited lookahead. Fortress
syntax is defined in the formalism of Parsing Expression Grammars
(PEGs), which support unlimited lookahead, are unambiguous and
are closed under union [16]. Consequently, any macro system for
Fortress must work in the context of a core syntax defined as a PEG.
To make the macro system as expressive as possible, we also allow
new syntax to be defined via arbitrary PEGs. Thus, combination
of new syntax with old involves composition of PEGs, and rules
for resolving conflicts between separately defined syntax must be
provided.

In this paper, we present a macro system for Fortress that meets
these design challenges. Our system works in the context of a
core syntax based on mathematical notation, and new syntax is
indistinguishable from old. Indeed, we have found that constructs
currently defined as part of Fortress core syntax can be moved to
macro definitions in libraries. One such example is the Fortress
for loop. In Figure 1, we define two variables g1 and g2 , each
referring to a list. Next, the for loop introduces the variables i
and j which iterate through the two lists, and all pairs of values
in the cross product of the two lists are printed. Our system allows
for loops such as this to be transformed into method calls and
anonymous functions as in Figure 2.

2. Contributions and Outline
The main contributions of this paper are:

• Design of a hygienic macro system in the context of a core
language based on parsing expression grammars

• A design for composing, and resolving conflicts among, sep-
arately compiled macros in the context of parsing expression
grammars

• Explanation of the low-level mechanics of a working im-
plementation of our system, available as open source in the
Fortress reference implementation

• Definition of a core calculus for the Fortress macro system

The rest of the paper is organized as follows. Section 3 describes
the design objectives of our system in detail. Section 4 describes
how new syntactic abstractions can be described in the presented
system through an example. Section 5 presents a formal treatment
of the system semantics. In Section 6 the implementation of the
system is presented and discussed. In Section 7 the macro system
is evaluated by discussing various syntax extensions implemented
in the system. A description of related work is given in Section 8,
and we conclude in Section 9 along with discussing future work.

3. A Growable Language
A growable language is one of the key ideas of Fortress. The
Fortress syntactic abstraction mechanism is designed to support the
language growth with the goals described in this section in mind.
Throughout this paper, we use the term macro to refer to a particular
language extension.

New syntax indistinguishable from the core syntax It would be
desirable if a macro syntax is indistinguishable from the core lan-
guage syntax so that the uses of the macro do not introduce any
visual clutter to the language. We could have chosen to enclose all
macro uses in special brackets which would have made the pars-
ing and recognition of macros easier. However, the result would
have been a language in which extensions stand out conspicuously
from core syntax, reminiscent of user-defined function definitions
in APL [21]. ‘Instead, we aim to design an extensible language
with no apparent differences between the core syntax and macro
uses, such as Scheme [2] and Lisp [23]. However, unlike the S-
expressions of Scheme and Lisp, the Fortress core syntax emu-
lates mathematical notation, which poses additional challenges in
achieving this goal.

Composition of independent macros Composability of indepen-
dent macros is especially important to support modular develop-
ment of a system. Contributions from different development teams
must be self-contained and must not interfere with each other. For
example, suppose that one contribution provides a grammar with
the following macro:

Expr |:= macro1 e : Expr ⇒ <[e]>

which extends (|:=) an existing nonterminal Expr representing an
expression with a new syntax “macro1 e” where e is an expression,
and translates (⇒) the new syntax to e. Now suppose that another
contribution provides a grammar with the following macro:

Expr |:= macro2 e : Expr ⇒ <[e2]>

which extends Expr with “macro2 e” where e is an expression,
and translates it to e2. Then a grammar extending both grammars
can use both macros as expressions, even in combination with each
other:

macro1(macro2 7)
macro2(macro1 7)

Expansion into other macros Macros may be defined in terms of
other helper macros. For example, the following macro:

Expr |:= macro3 e : Expr ⇒ <[macro4 e]>

is defined in terms of the following helper macro:

Expr |:= macro4 e : Expr ⇒ <[e]>

Recursion and case dispatch Many interesting macros can be
nicely written using recursive applications of defined macros. The
capability of recursively defining macros (including mutual recur-
sion) and dynamically dispatching on macros improves expressive-
ness as we discuss in Section 8. For example, the following macro:

grammar ForLoop extends {Expression, Identifier }
Expr |:=
for { i : Id← e : Expr , ? Space }∗ do block : Expr end⇒
<[for2 i ∗ ∗; e ∗ ∗; do block ; end]>

| for2 i : Id∗; e : Expr∗; do block : Expr; end⇒
case i of

Empty⇒
<[block]>

Cons(ia, ib)⇒
case e of

Empty⇒<[throw Unreachable]>
Cons(ea, eb)⇒

<[((ea).loop(fn ia ⇒ (for2 ib ∗ ∗; eb ∗ ∗;
do block ; end)))]>

end
end

end

Figure 3. A grammar definition of a simplified syntax of for
loops in Fortress

Expr|:= macro5 i : Id∗ do block : Expr end⇒
case i of

Empty⇒ <[block]>
Cons(first , rest)⇒

<[do println first
macro5 rest do block end

end]>
end

defines a new syntax “ macro5 i do block end ” where i is a
sequence of identifiers (Id∗) and block is an expression, and its
translation depends on the actual value bound to i . If i is an empty
sequence (Empty), the input sequence matched by the new syntax
is translated to block . Otherwise, it prints the first identifier in i
(first) and recursively applies the new syntax to the remaining
identifiers in i (rest).

Similar syntax for definition and use of a macro If the syntax
for defining a macro resembles the syntax for using the macro, it
would be easy for a programmer to learn how to use the macro just
by looking at its definition. Key features to enable this similarity
between the definition site and use site of a macro include:

• Tokens appear in a macro definition where they appear in a
use site of the macro, in contrast to other syntax specification
languages [22, 28] where the terminal tokens are specified in a
separate section.

• Whitespace characters between tokens are interpreted as op-
tional Fortress whitespace characters, making the specification
of a macro less bloated compared to using another character
sequence to represent the specification of whitespace.

4. Syntactic Abstraction by Example
The Fortress syntactic abstraction mechanism provides a way to
extend the core language syntax. Before formally describing the
syntactic abstraction mechanism, we first provide some examples
of how to define and use macros. Figure 3 presents a definition of a
simplified syntax of for loops in Fortress.

A programmer can define a new syntax with a grammar defini-
tion. A grammar is a self-contained language extension which can
be composed with other grammars in a modular way. An example
grammar ForLoop is defined in Figure 3. A grammar contains a
set of nonterminal definitions and extensions, and may extend any
number of other grammars, since it often makes sense to use macros

from different grammars to implement new macros, or to create a
new language extension by composing different languages. A new
nonterminal is defined as:

NewNonterminal ::= ...

and an existing nonterminal is extended as:

ExistingNonterminal |:= ...

The available nonterminals in an extended grammar may be used
as a basis for a nonterminal definition or extension. The ForLoop
grammar extends an existing nonterminal Expr which defines all
expression constructs in Fortress. It inherits the nonterminals pro-
vided by the extended grammars Expression and Identifier so
that it can use the nonterminals in it. The Expr and Id nonter-
minals are defined in the Expression and Identifier grammars
respectively and thus are available in ForLoop . We present the
precise definition of nonterminal availability in Section 5.1.2.

A nonterminal definition or extension has an “ordered se-
quence” of alternative variants. For example, ForLoop extends
Expr with two variants: the for loop variant and its helper for2 .
A variant consists of a pattern, followed by⇒, and a transforma-
tion expression. A transformation expression is either an expression
enclosed by <[and]>, or a case expression with branches, whose
right-hand sides are transformation expressions.

A pattern is defined by a sequence of parts. The pattern language
is based on Parsing Expression Grammars (PEGs) and is described
in Section 5. A part is either a simple part or operations over parts.
Different kinds of parts make up the pattern for the for loop
variant:

for { i : Id← e : Expr , ? Space }∗ do block : Expr end

The first symbol is the terminal for , followed by a symbol group,
another terminal do , a nonterminal reference “block : Expr”, and
then another terminal end . A terminal is any sequence of Uni-
code [33] characters that is not the name of a nonterminal avail-
able in the containing grammar. A symbol group is a sequence of
symbols inside curly braces. A symbol or a symbol group may be
followed by an option operator ? or a repetition operator + (one
or more repetition) or ∗ (zero or more repetition). A nonterminal
reference such as “block : Expr” is a reference to any nonterminal
available in the containing grammar optionally prepended by a la-
bel followed by “:”. The whitespace between symbols represents
optional Fortress whitespace. When a space is required, the non-
terminal Space specifies the required space. The pattern language
supports unlimited lookahead in the same way as PEGs, by means
of the semantic predicates: ∧ (must match) and ¬ (must not match),
both of which do not consume input.

A transformation expression gives meaning to the macro by
providing a translation of the pattern. A translation is expressed
either as an expression enclosed by <[and]>, or a case expression
over a pattern variable. The transformation expression of the for
loop variant:

<[for2 i ∗ ∗; e ∗ ∗; do block ; end]>

uses the syntax-unfold operator, ∗∗, to expand the lists of identi-
fiers and expressions as arguments to the for2 variant. The syntax-
unfold operator is similar to the ellipsis operator [29] found in
Scheme [2], and expands into the syntax matched by its arguments.
The for2 variant is translated into core Fortress syntax by recur-
sively traversing the identifier and expression lists. The transforma-
tion expression uses two nested case dispatches on the list structure
of the pattern variables i and e . The actual value bound to a pat-
tern variable is compared to the left-hand side of each case clause:
an empty list is matched to Empty and a nonempty list is matched
to Cons . If a list is nonempty, the first argument of Cons contains

g1.loop(fn i⇒
for j ← g2 do

println “(” i “, ” j “)”
end)

Figure 4. One unrolling of the for loop from Figure 1

the head of the list and the second argument contains the rest of the
list. For each pair of head elements from an identifier list i and an
expression list e, we call the loop method on the head of the ex-
pression list, ea , with an anonymous function whose argument is
the head of the identifier list, as the input to the loop method. The
two lists of identifiers and expressions are guaranteed to have the
same length by the structure of the for variant.

Although the transformation is expressed in terms of Fortress
concrete syntax, the act of transforming a use site at parse time
is not performed on the concrete syntax. Instead, the transforma-
tion expression is parsed into Fortress Abstract Syntax Tree (AST)
nodes, containing placeholder nodes to represent pattern variables,
and the act of transforming a use site is performed by substitut-
ing AST nodes in for the placeholders. An alternative approach
would have been a multi-staged system in which transformation ex-
pressions consist of explicit user-defined computations of resulting
AST nodes. Although such an approach is more flexible, it is also
tedious and error prone. Moreover, it is difficult to check that syn-
tax trees constructed through explicit computation are well-formed.
Earlier work has shown that although a template-based approach is
not as flexible as an approach based on explicit computation, it is
usually possible to express the transformations desired in practice
[5, 8].

The for loop example in Figure 3 shows that our syntactic ab-
straction mechanism satisfies the five goals described in Section 3:

• New syntax indistinguishable from the core syntax: As Figure 1
shows, the use of the for macro is indistinguishable from other
Fortress language constructs.

• Composition of independent macros: The for macro extends
the grammars, Expression and Identifier , so that it can use
the nonterminals, Expr and Id , defined in them.

• Expansion into other macros: The for macro is defined in
terms of the for2 macro.

• Recursion and case dispatch: The for2 macro is recursively de-
fined using two nested case dispatches. Using the for2 macro,
the for loop in Figure 1 can be rewritten as in Figure 4. One
more application of the macro will desugar the for loop as in
Figure 2.

• Similar syntax for definition and use of a macro: The syntax for
defining the for2 macro:

for2 i : Id∗; e : Expr∗; do block : Expr; end

and the use of it:

for2 i ∗ ∗; e ∗ ∗; do block ; end

is very similar because tokens appear in the same place in both
definition and use sites of the macro and implicit whitespace
specification avoids visual clutter.

5. Syntax Normalization
In this section, we describe how a Fortress source program using
macros is turned into a Fortress AST without macros which can
be interpreted by the Fortress interpreter. For presentation brevity,
we focus on a core subset of Fortress, Core Fortress. The abstract
syntax of Core Fortress is presented in Figure 5.

Program ::= Grammar∗ Expr

Grammar ::= grammar GrammarName
extends { GrammarName∗ }
(Definition | Extension)∗

end
Definition ::= NTName ::= Variant∗

Extension ::= NTName |:=Variant∗

Variant ::= Pattern⇒ Action
Pattern ::= Part∗

Part ::= SimplePart ?
| SimplePart ∗
| SimplePart +
| SimplePart
| ¬ Part
| ∧ Part

SimplePart ::= PatternVar : BasePart
| BasePart

BasePart ::= NTName
| Terminal
| [Char:Char]

Action ::= <[Term]> template
| case PatternVar of

Empty ⇒ Action
Cons(PatternVar, PatternVar)⇒ Action

end

Expr ::= n number
| s string
| x variable
| fn x ⇒ Expr function expression
| Expr Expr function application
| (Expr) parenthesized

Term ::= PatternVar
| Term ∗∗
| n
| s
| x
| fn x ⇒ Term
| Term Term
| (Term)

Figure 5. Abstract syntax for Core Fortress

A Core Fortress program consists of a possibly empty sequence
of grammar definitions followed by an expression, called the main
expression. Grammar definitions introduce new syntax to Core
Fortress. A grammar definition includes a sequence of nontermi-
nal definitions or extensions and it may extend other grammars to
use nonterminals defined in the extended grammars in its definition.
A nonterminal definition or extension has an ordered sequence of
alternative variants and a variant consists of a pattern and a trans-
formation expression (Action in Figure 5). A transformation ex-
pression is either a term enclosed by <[and]>, called a template,
or a case expression over a pattern variable. The nonterminals
GrammarName, NTName, PatternVar, Terminal, and Char range
over Unicode strings. An expression is a number, string, variable,
function expression, function application, or parenthesized expres-
sion. A term is a pattern variable, an ellipses term, number, string,
variable, function term, function application term, or parenthesized
term. The metavariables n, s, and x range over numbers, strings,
and variables, respectively.

Because grammar definitions introduce new syntax to the lan-
guage, the program itself defines how to parse it and turn it into
an AST. We call the entire process from parsing a source program
to creating a corresponding AST syntax normalization. Syntax nor-
malization consists of two stages: parsing and transformation. In
the parsing stage, the source program represented as a Unicode
string is turned into what we call a parsed program. Then, in the
transformation stage, the parsed program is transformed to a pro-
gram in Core Fortress AST. Each stage is described in detail in the
subsequent subsections.

5.1 Parsing
The parsing stage transforms a source program in a Unicode string
into a parsed program in an AST representation which describes
how the program is to be transformed into an executable Core
Fortress program. The transformation is nontrivial because a pro-
gram itself defines how it is parsed: the grammar definitions in the
program determines which syntax may occur in the grammar defi-
nitions and the main expression.

In order to resolve this self-dependency problem, we take a two-
step approach to parse Fortress programs. In the first step, we parse
all the grammars except for the action part of each variant and the
main expression. The action parts and the main expression are just
parsed as Unicode strings. This step is a standard parsing which
generates an AST where expressions are represented as strings. In
the second step, we parse each action part and the main expression.
In order to parse the action parts, we need to compute what we
call the set of available macros. In Section 5.1.2, we show how to
compute the set of available macros for a given grammar, and how
to derive a PEG from which a PackRat parser can be generated
(for example by using Rats! [17, 18]) and then used to parse the
action parts. The action parts and the main expression are parsed
into node expressions. A node expression describes how macros
are invoked to turn a macro syntax into a Core Fortress syntax. The
construction of node expressions is described in Section 5.1.3. This
two-step approach works because the grammar definitions appear
before the main expression. The approach also has the advantage
that we break the dependency in parsing recursive macros.

The parsing stage relies on Parsing Expression Grammars
(PEGs) [16] because they have some advantages over usual Context-
Free Grammars (CFG) [10] based parsing formalisms such as LL
and LALR(k). PEGs are unambiguous, are closed under union, and
integrates lexing with parsing. We need the closure property be-
cause we want to combine PEGs for different grammars and the
integrated lexing and parsing makes it easy to achieve our goal of
“similar syntax for definition and use”. Furthermore, the parsers
based on PEGs allow a linear execution time compared to the gen-
eralized CFG parsers. We briefly introduce PEGs in Section 5.1.1
along with a description of our pattern language which is effec-
tively a variant of Parsing Expressions.

5.1.1 Parsing Expression Grammars
A Parsing Expression Grammar (PEG) is a 3-tuple (N, T, s), where
N is a finite set of nonterminal definitions, T is a finite set of
terminal symbols, s ∈ N is the start nonterminal definition. A
nonterminal definition is a pair (n, cs) where n is a name and cs
is a list of prioritized alternatives, each alternative being a parsing
expression [16]. The terminal symbols and the nonterminal names
are disjoint. If e, e1, and e2 are parsing expressions then so are the
empty string ε, a terminal symbol a ∈ T , a nonterminal name n, a
sequence e1 e2, an optional expression e?, zero-or-more repetitions
e∗, a not-predicate ¬e, and a and-predicate ∧e.

The main difference between PEGs and CFGs is the lack of
ambiguity in PEGs resulting from the prioritized alternatives. In a
CFG, the two nonterminal definitions A = a | ab and A = ab | a

grammar A
Nt::=

macroA ⇒ . . .
end
grammar B extends {A}

Nt|:=
macroB ⇒ <[. . .macroA . . .]>

end
grammar C extends {A}

Nt|:=
macroC ⇒ . . .

end

Figure 6. Grammars including multiple nonterminal extensions

grammar D extends {B}
Nt|:=

macroD ⇒ <[. . .macroB . . .]>
| B .Nt

(* This definition is illegal,
because macroA is not propagated by the grammar B:

Nt|:=
macroD2 ⇒ <[. . .macroB . . .macroA . . .]>

*)
end

Figure 7. Grammars should behave as usual module systems

are equivalent. However, in a PEG, the second alternative of the
former would never succeed because the first alternative is always
taken if the input string to be recognized starts with a.

The pattern language shown in Figure 5 is based on parsing ex-
pressions with some differences. If Parti (1 ≤ i ≤ n) of a sequence
of parts, (Part1, Part2, . . ., Partn), corresponds to a parsing expres-
sion ei, then the sequence of parts corresponds to the sequence of
parsing expressions with optional Fortress whitespace in between:
(e1, w, e2, w, . . ., w, en). Here w refers to the nonterminal defining
the optional whitespace in Fortress. This small difference reduces
the visual clutter when writing language extensions. We also al-
low character classes to be specified(e.g. the character class of “;”
and the lowercase letters from “a” to “z” [;a:z]). Character classes
can be trivially, but tediously, encoded in parsing expressions by
explicit enumeration of the alternatives.

5.1.2 Combining Grammars
In order to create a parser and parse the action parts in a given
grammar, we need to compute the set of available macros. The
set of available macro definitions for a grammar consists of the
macros defined by the nonterminal definitions and extensions in
the grammar and inherited from the extended grammars. However,
the multiple “inheritance” of grammars in combination with the
prioritized alternatives of PEGs makes it nontrivial to compose
nonterminal extensions.

For example, Figure 6 shows three grammars A, B, and C, each
of which defines a single macro. We write <[. . .macroA . . .]> to
indicate a template where the macro macroA occurs somewhere.
Grammar B and C extend grammar A which contains the defini-
tion of the nonterminal Nt .

The interesting question is what the semantics of a nonterminal
extension should be. It seems natural to expect that B is able to
use all the macros defined in A since it extends it. However, what

grammar E extends {B, C}
Nt|:=

macroE ⇒ <[. . .macroB . . .macroC . . .]>
end

Figure 8. Multiple extensions of a single nonterminal

if a grammar such as D in Figure 7 extends B? Because D does
not extend A directly, we do not allow macroA to be available
in the grammar D as the comment enclosed by “(*” and “*)”
in Figure 7 shows. This behavior is consistent with the Fortress
component system where a component does not reexport all of
its imports by default. A grammar may explicitly propagate an
inherited macro by referring to the nonterminal extension defining
the macro. The second alternative of the nonterminal extension in
D gives an example of explicit propagation of an inherited macro:
B .Nt. Whenever macroD is available, macroB is also available.

Grammar B overrides the definition of the Nt nonterminal in
grammar A, but the override does not affect grammar C which also
extends A. It is only possible to completely override a nonterminal
if all uses of the grammar containing the overridden nonterminal
is changed to the grammar containing the overriding nonterminal.
In the example above C would have to extend B instead, and there
is no guarantee that another grammar which extends A could be
created.

A grammar may extend multiple grammars. Multiple extension
induces a lattice structure in the extension relation. One key issue
with multiple extension is how to combine grammars when there is
a “diamond” shape in the lattice as shown in Figure 8. The grammar
E extends B and C both of which extend the same grammar A
but define different extensions for the same nonterminal Nt . One
approach would be to collect the macros along the paths from B
and C to A following the extension relation, and then concatenate
them:

Nt|:=
macroE ⇒ <[. . .macroB . . .macroC . . .]>
|macroB ⇒ <[. . .macroA . . .]>
|macroA ⇒ . . .
|macroC ⇒ . . .
|macroA ⇒ . . .

The order of macroB and macroC could be reversed, but it has
the same problem as this approach: the syntax defined in A might
shadow macroC because the variants are ordered. It is an unfortu-
nate behavior because we intend to support a user-defined syntax
on top of the existing Fortress syntax. Both macroB and macroC
should have higher priority than macroA.

Our solution to the shadowing problem is to collect the macros
along the paths till the lowest common ancestor of the immediately
extended grammars in the extension relation and concatenate them,
and then recursively collect and concatenate the macros along the
paths to the end of the extension relation. For example, we resolve
Nt in E as follows:

Nt|:=
macroE ⇒ <[. . .macroB . . .macroC . . .]>
|macroB ⇒ <[. . .macroA . . .]>
|macroC ⇒ . . .
|macroA ⇒ . . .

One thing to note is that the ordering of macros must be specified.
The ordering should be deterministic and preferably the grammar
writer should be able to control it. Therefore, we have chosen to use
the order in which the extended grammars appear in the extends
clause.

NodeExpr ::= PatternVar
| case PatternVar of

Empty ⇒ NodeExpr
Cons(PatternVar, PatternVar)⇒ NodeExpr

end

| Transformer (NodeExpr)
| Ellipses (NodeExpr ,NodeExpr)
| NodeConstructor(NodeExpr)

Figure 9. Abstract syntax for node expressions

Using the solution, we build a PEG from which a parser can be
generated and used to parse the action parts and the main expres-
sion. The PEG for a grammar is:

• formed from all definitions from all transitively-extended gram-
mars and the current grammar,

• modified by the extensions from the current grammar, if any,
and

• modified by the implicit extensions for all nonterminals in the
inherited extensions that are not extended in the current gram-
mar.

The first step of constructing the PEG is to gather all of the non-
terminal definitions from all the transitively-extended grammars.
A variant in a nonterminal definition is either a pair of a syntax
pattern and a transformer or a reference to an extended grammar’s
extension (propagation of an extension). For the former, the pair
is simply added to the PEG. For the latter, we retrieve the exten-
sions added by that grammar, process them, and add them to the
PEG. The next step is to apply the extensions. The extensions con-
sist of the explicit extensions (defined in the grammar) and the im-
plicit extensions inherited from the extended grammars. The PEG
for parsing the main expression is obtained in the same way as for a
grammar which extends all the preceding grammars, but containing
no definitions nor explicit extensions.

5.1.3 Construction of Node Expressions
Using the parser generated by a PEG as described in Section 5.1.2,
the action parts in the grammars and the main expression are parsed
into node expressions. A node expression is a representation of
how macro invocations are applied to obtain a Core Fortress AST.
The abstract syntax of node expressions is presented in Figure 9
where a sequence of NodeExpr is represented as NodeExpr . A
node expression is a pattern variable, a case dispatch, a macro
invocation represented as a reference to a Transformer applied to a
number of node expression arguments, an ellipses node represented
as a reference to an Ellipses applied to a node expression (the
first argument), or a Fortress expression represented as a reference
to a NodeConstructor applied to a number of node expression
arguments. We use Transformer and NodeConstructor to range
over templates and Core Fortress expressions, respectively. The
second argument of the Ellipses node is initialized with its first
argument and changes during the evaluation of the node.

A node constructor is created when an input string is matched
by the Core Fortress syntax. A transformer is created whenever a
macro use is parsed by matching the macro definition against the
macro use. A macro definition is matched in the same way as a
parsing expression is matched against an input string: each part is
matched in the order it appears. If the macro definition contains any
references to other nonterminals, then we parse with respect to the
nonterminals and if they succeed the result is a node expression,
and we continue parsing the rest of the macro definition. If all
the parts in a macro definition are matched, then a transformer

is created with the node expressions from any nonterminals as
arguments.

Consider an example from Section 3, where macro1 is applied
to the literal 7:

macro1 7

and parsed against the macro definition:

Expr |:= macro1 e : Expr ⇒ <[e]>

First, we see that there are two parts in the macro definition:
macro1 and “e :Expr”. The first part is a terminal part which
must be matched verbatim in the input sequence and the other part
is a binding part where the pattern variable e gets bound to the re-
sult of parsing Expr . Parsing the action part of macro1 returns the
node expression consisting of a pattern variable reference and is
transformed to a Transformer T1, where T1 is a fresh name. Then,
parsing the macro use requires parsing 7 against the Expr nonter-
minal, which is matched by the Core Fortress syntax and the result
is a node constructor for the Core Fortress abstract syntax 7 . We
bind e to 7 in the environment and pass 7 as an argument to the
transformer T1, resulting in the node expression T1(7) which can
be passed on to the transformation phase described in Section 5.2.

5.2 Transformation
Transformation is the evaluation of node expressions to construct a
Core Fortress AST without macros which can be interpreted by the
Fortress interpreter. Given a parsed program which contains a set of
grammars and a main expression, we transform it to an executable
Core Fortress program by evaluating the node expression first in
the main expression and consequently in transformers.

We define the evaluation of node expressions in terms of a
small-step operational semantics [26]. We define the semantics
using a transition system. The transition system consists of a set
of configurations σ ∈ Σ, a set of terminal configurations T ⊆ Σ,
and a transition relation → ⊆ Σ × Σ. A configuration is a node
expression along with two environments: Υ, Γ ` NodeExpr . The
transformer environment Υ maps transformer names to transformer
definitions and the node environment Γ maps pattern variables to
node expressions. We write “Γ

ˆ
v 7→ n′

˜
” to denote an extension of

Γ with the new bindings “v 7→ n′”. The transformer environment
is initialized to contain all the transformers from all the grammars
and does not change during evaluation. This is possible because
the parsing has already resolved the scope of the transformers
introduced by the grammars. The node environment is initially
empty. A value is a node constructor application, the arguments
of which are also values.

The evaluation of a node expression is inductively defined by
the transition relations in Figure 10. The metavariables t ranges
over transformer names, v ranges over pattern variables, n ranges
over node expressions, and c ranges over node constructors. For
brevity, we write “t v.n” for a transformer definition of name t,
which takes the pattern variables v and has the body n. If the
node expression is a pattern variable, we look it up in the node
environment. If the node expression is a case-dispatch, we first
evaluate the condition v in the current environments. The result is
either an empty list Empty or a nonempty list Cons(hd , tl) with
the first element hd and the rest of the elements tl . If it is an empty
list, we evaluate n1 in the current environments. If it is a nonempty
list, we extend the node environment with the bindings for the
pattern variables v1 and v2 to hd and tl respectively, and continue
the evaluation. If the node expression is a macro invocation, we
look up the transformer definition in the transformer environment,
evaluate the macro arguments, and extend the node environment
with the bindings from the pattern variables to their actual values,
and continue evaluating the body. If the node expression is an

[Pattern Variable]
Γ(v) = n

Υ, Γ ` v → Υ, Γ ` n

[Case Empty]
Υ, Γ ` v → Υ, Γ ` Empty

Υ, Γ ` case v of → Υ, Γ ` n1

Empty⇒ n1

Cons(v1, v2) ⇒ n2

end

[Case Cons]
Υ, Γ ` v → Υ, Γ ` Cons(hd , tl)

Υ, Γ ` case v of → Υ, Γ [v1 7→ hd] [v2 7→ tl] ` n2

Empty⇒ n1

Cons(v1, v2) ⇒ n2

end

[Macro Invocation]
Υ(t) = t v.n Υ, Γ ` n→ Υ, Γ ` n′

Υ, Γ ` t(n)→ Υ, Γ
ˆ
v 7→ n′

˜
` n

[Ellipses First]
PV (n′′) 6= ∅

|n′|+ 1 = i ≤ size(n) vj ∈ PV (n) |Γ(vj)| > 1

Γ′ = Γ
h
vj 7→ Γ(vj).nth(i)

i
Υ, Γ′ ` n′′ → Υ, Γ′ ` n′′′

Υ, Γ ` Ellipses(n, n′n′′)→ Υ, Γ ` Ellipses(n, n′n′′′)

[Ellipses Middle]
PV (n′′) = ∅

|n′|+ 1 = i− 1 < size(n) vj ∈ PV (n) |Γ(vj)| > 1

Γ′ = Γ
h
vj 7→ Γ(vj).nth(i)

i
Υ, Γ′ ` n→ Υ, Γ′ ` n′′′

Υ, Γ ` Ellipses(n, n′n′′)→ Υ, Γ ` Ellipses(n, n′n′′′)

[Ellipses Last]
PV (n′′) = ∅ |n′|+ 1 = size(n)

Υ, Γ ` Ellipses(n, n′n′′)→ Υ, Γ ` n′n′′

[Node Constructor]
Υ, Γ ` n→ Υ, Γ ` n′

Υ, Γ ` c(n)→ Υ, Γ ` c(n′)

Figure 10. Operational semantics for node expressions

ellipses node, the first argument of the node is replicated by the
number of times equal to the length of a pattern variable within
the first argument. The second argument of the ellipses node keeps
track of the intermediate results during the evaluation of the ellipses
node. For brevity, we write “PV (n)” for a set of pattern variables
in the node expression n, “size(n)” for the length of a pattern
variable within the node n, and “l.nth(i)” for the i-th element of
the list l. If the node expression is a node constructor invocations,
we construct the corresponding Core Fortress node.

The evaluation of a node expression may either fail, diverge,
or result in an executable Core Fortress node. The evaluation may
diverge if there is an infinite recursion in the definition of a trans-
former.1 We do not consider nontermination a problem, because it

1 Transformation described in this section is similar to Wand’s[24] algo-
rithm. The transformation function implements τ while the parser imple-
ments β and D.

will mainly happen when a macro does not deconstruct input, and
programmers writing programs with recursive functions are used to
deal with this kind of problems.

5.3 Hygiene
Fortress macros are hygienic, meaning any bindings introduced
by a macro are fresh. Our hygienic system is a simplification of
Clinger’s algorithm [11]. Since our macro system cannot introduce
macros itself, nor can a macro be hidden through a lexically bound
variable, we need not concern ourselves with much of the complex-
ity of the original hygiene algorithm.

The hygienic transformation works as follows. Before a macro
is invoked, no renaming is performed. After a macro invocation,
a flag is set which indicates that renaming should take place for
the transformation of the current node and all the children nodes.
During hygienic transformation, identifiers are looked up in a syn-
tactic environment and replaced with the renamed identifiers they
are bound to. The initial syntactic environment is the identity en-
vironment. Once the flag indicating that renaming should occur
is set, each language construct binding an identifier generates a
unique identifier and maps the original bound identifier to the new
unique identifier. Each binding construct introduces a new syntactic
environment which maintains a link to the previous environment.
Identifiers not found in the immediate environment are recursively
looked up in the parent environment until a mapping is found.

Pattern variables in a macro definition are never renamed since
they are syntactic entities being introduced into the macro. In this
way, we prevent variables passed to the macro from being renamed
by virtue of the fact that they share names with bound identifiers
introduced by the macro. Consider the following macro definition:

Expr|:= foo e : Expr ⇒ <[fn d⇒ d + e]>

If the macro is invoked as:

foo d

then the result after hygienic transformation should be:

fn d1 ⇒ d1 + d

6. Implementation
The syntactic abstraction mechanism is built on top of Rats!, the
underlying parser technology used to parse Fortress programs. A
key aspect of Rats! is its composition framework based on modules.
By separating grammar extensions in their own module, we were
able to extend the core Fortress grammar in a modular way.

A new parser is generated for each modified or defined nonter-
minal in an extension grammar. All the nonterminals in the gram-
mar are compiled into Rats! syntax and added into a new module,
Muser. A nonterminal that is extended originally has productions
p1 . . . pn and is modified so that Muser.nonterminal is inserted
before p1. All productions that refered to nonterminal will now
implicitly refer to Muser.

The macro system is logically broken up into two stages: pars-
ing, and transformation. The first stage consists of parsing the
grammar declaration into an AST which contains transformation
nodes instead of the template bodies. This stage has two steps:
parsing the grammar declaration and parsing the template bodies.
The core fortress parser is used to parse the grammar declarations
and then those results are used to construct a new parser that is
used to parse the templates. The system constructs a new parser
for each unparsed template body and replaces the grammar AST
node with a transformation node which contains the parsed tem-
plate body. When a component is parsed, the grammars that it im-
ports define the PEG used to parse the component body. The result-
ing AST will have nodes that specify a macro invocation. In stage

two(transformation) the AST will be run through a macro process-
ing engine which converts macro invocation nodes into their corre-
sponding template bodies.

Template bodies consist of regular Fortress syntax, macro in-
vocations, pattern variables, and ellipses nodes. During transfor-
mation, the macro system will dispatch according to these four
cases. For regular Fortress syntax the engine will recursively dis-
patch on child nodes but otherwise do no additional processing un-
less a macro has already been invoked in which case the hygiene
rules will be applied. Macro invocations will cause the engine to
look up the function defined for that macro and apply it to the pa-
rameters of the macro. Pattern variables are looked up in the cur-
rent macro’s environment and replaced with a corresponding ex-
pression. Ellipses nodes cause the engine to replicate the immedi-
ate child node of the ellipses node a number of times equal to the
length of a pattern variable that is also inside the ellipses node. The
replicated nodes are then spliced into the parent node.

7. Evaluation
We have evaluated the design of our syntactic abstraction system by
implementing the for loop example shown in Figure 3, and also a
grammar that recognizes regular expressions and one recognizing
XML. These examples show that the system is suitable for lan-
guage extensions and domain specific languages by allowing their
care-free implementation in general. The grammars for XML and
regular expressions can be found as part of the open-source Fortress
interpreter [3].

The for loop example demonstrates a weakness of the macro
system in that some macros must be split up to accomodate the
parser. The for loop cannot be written directly because when the
ellipses are expanded the intermediate commas are missing and so
the parser would not recognize the syntax as a for loop macro.
Instead, the body of the for loop is written in such a way that
no syntactic markers are needed and a separate macro is invoked
with this simpler body. This generally means that most macros
will need two forms and macro writers will have to know about
both forms when invoking another macro inside their template. A
solution to this problem would be to add operations over lists, so
that the identifiers and the corresponding expressions in the for loop
example could be zipped, and expanded with the commas in place.
In general it would be useful if one could mark local helper macros
as such, e.g. by using visibility modifiers like private in Java.

The system has a number of limitations. Syntax extensions are
imported at the component level, and so we do not support lexically
scoped syntax extensions like Scheme [2] or OMeta [37] does. Sup-
port for lexical scoping could be added later. A number of other
systems [18, 37] based on PEGs allow semantic predicates in pars-
ing expressions. A semantic action is a boolean-valued expression
which must be true in order for a parsing expression to match. Se-
mantic actions are useful in some situations, but in our exprience
we haven’t had any need for implementing any of our examples yet.

Currently the specification of syntax is not separated from the
specification of semantics(actions), e.g. like in Bracha’s [6]. Such
a separation can be useful, e.g. for visualizing the source code in
IDEs, or supporting different transformations. Explicit separation
of the syntax and transformation is possible and we would like to
investigate this in the future.

The current implementation uses Rats! to generate a parser for
each transformation expression. The overall parsing of a Fortress
program performs comparable to the parsers generated by Rats!,
that is linear time. However there is the overhead of generating a
grammar and invoking Rats! on that grammar for each transforma-
tion expression, which currently slows down the parsing first time
a macro is used. The following times are for free because the gen-

erated parser is cached. The size of the transformed Core Fortress
program is in worst case exponential in the size of the input.

Much of the syntactic abstraction system functionality falls out
from the mechanisms inspired by Scheme systems, however the
uniform and elegant structure of s-expressions cannot be reused in
the context of Fortress, due to the many nuances of concrete syntax
of Fortress. This prevented us from writing procedural macros
efficiently, the amount of code required to construct a Fortress AST
makes them an unattractive path to take.

8. Related work
Our system for syntactic abstraction incorporates ideas from two
main lines of research: extensible grammars for meta-programming;
and Lisp and Scheme macro systems.

Meta-programming systems and extensible grammar systems
provide frameworks for constructing languages, extending lan-
guages with domain-specific notations, and translating between
languages. Typically, a meta-program manipulates a separate object-
program. Sometimes the meta-program and object-program are
written in different languages.

In contrast, Lisp and Scheme macros affect subsequent parts
of the same program that contains the macros. Using macros, pro-
grammers can write syntax extensions and domain-specific lan-
guages as libraries, with no need for preprocessors or custom com-
pilers. Fortress takes this approach of supporting extension from
within, rather than making it a separate facility with separate tools.

8.1 Extensible Syntax and Meta-programming
There are numerous languages, libraries, and frameworks designed
for creating language tools, from simple parser generators [22]
to comprehensive language definition frameworks. In this section
we discuss a few systems that offer special support for language
extension or translation.

Rats! [17, 18] is a tool for producing packrat [16] parsers from
modular grammars. Using the module system a programmer can
create new languages by applying modifications to existing gram-
mars. Rats! provides parsing support for Fortress syntactic abstrac-
tion system.

OMeta [38] is an embedded language(in COLA [12] or Squeak
Smalltalk [32]) which combines pattern matching and parsing.
OMeta is based on PEGs which are generalized to work on ar-
bitrary datatypes not only streams of characters, which leads to the
use of PEGs for pattern matching. The encapsulation of grammars
in OMeta is also inspired by object-oriented constructs but in con-
trast to grammars in Fortress they are encapsulated in a “class”
like construct which only supports extension of a single grammar,
the reason is mainly for avoiding nameclashes. Single extension
is not a good match for expressing grammar extension since it is
often the case that a grammar extends multiple other grammars.
This is solved in OMeta though the use of the “foreign” production
which effectively dispatches to separate grammars. Fortress solves
this issue by allowing a grammar to extend multiple other gram-
mars. “foreign” in Ometa also does not allow the programmer to
selectively provide nonterminals to the user.

Katahdin [30] is a platform for specification and implementa-
tion of programming languages. A language is specified using a
language where both the syntax and semantics are mutable at run-
time. Katahdin is based on PEGs with some modifications, the
choice is not prioritized but ordering is resolved based on a longest
match strategy. Katahdin allows whitespace everywhere unless not
explicitly disallowed, similar to our approach. However they go a
step further and allow the programmer to redefined whitespace lo-
cally. A similar approach would benefit the Fortress syntactic ab-
straction system.

MetaBorg [8, 7, 27, 35] is a method of adding domain-specific
notation support to general-purpose languages. The method relies
on a syntax definition framework called SDF [20]. SDF permits
definitions of arbitrary context-free grammars, which enables mod-
ular development of syntax. Another component in the MetaBorg
tool chain is a term-rewriting language called Stratego. SDF and
Stratego together support the construction of program transformers;
SDF is used to describe the syntax and embed it into a Stratego pro-
gram that specifies the transformation rules. The MetaBorg tools
support language extension, but they constitute an external mecha-
nism rather than an internal, integrated extension mechanism.

Silver [39] is a language description framework based on at-
tribute grammars designed for the modular construction and com-
position of domain-specific languages. The semantics of the lan-
guage is defined by its nonterminals’ attributes. Silver supports a
feature called forwarding [40] that allows the semantics of one syn-
tactic form to be defined in terms of a translation into another syn-
tactic form.

Cardelli et al. [9] devised an extensible syntax system based
on grammar modifications. Like Lisp and Scheme but unlike most
meta-programming systems, their system allowed programs to ma-
nipulate their own syntax; a programmer could introduce a new
form and then use it in the same program.

Translations in their system were given in terms of concrete
syntax patterns, allowing syntactic abstractions to be built incre-
mentally. Like Scheme’s hygienic macro systems, their system also
preserves lexical scoping via renaming, but they have an explicit
mechanism for requesting a fresh variable name.

Their system is more restrictive than ours in several ways. First,
they use an LL(1) parser, and consequently their parser is efficient,
but they cannot handle many of the syntaxes supported by Fortress.
Their system performs transformations as part of the parsing pro-
cess, and translations are analyzed to assure the termination of pars-
ing. In contrast, our system has a separate translation pass, and
while parsing is guaranteed to terminate, the translation pass might
not.

8.2 Lisp and Scheme Macros
Fortress borrows several ideas from Lisp and Scheme macros.
Fortress syntax extensions are part of Fortress programs, not ex-
ternal metadata requiring special handling. We also take heed of
Scheme’s consideration for proper lexical scoping. Finally, the se-
mantics of grammars is designed to support the same kind of mod-
ularity patterns as Scheme’s module systems do.

In 1986, Kohlbecker et al. [25] introduced hygienic macro ex-
pansion to prevent the inadvertent variable captures that sometimes
occur in naive macro expansion. The original hygiene algorithm
handled only top-level macros. Researchers in the Scheme com-
munity extended hygiene to cover locally defined macros [11, 14],
first-order modules [15, 31, 36], and dynamically-linked compo-
nents with macros in the signatures [13].

The original algorithm worked with top-level macros imple-
mented as Lisp functions on syntax trees, and it involved scanning
the result of every macro call to rename newly introduced identi-
fiers. The algorithm developed by Clinger and Rees [11] eliminated
the repeated code scanning by restricting macros to use fixed tem-
plates rather than arbitrary code to compute their results.

Our syntactic abstraction system implements hygiene in a man-
ner that combines features of the Kohlbecker algorithm and the
Clinger and Rees algorithm. Fortress macros occur only in gram-
mars defined in APIs, so we do not need the machinery for locally
defined macros, and Fortress macros specify their translations in
terms of templates, so we do not need deep code scans.

The Fortress grammar system is designed to support modular
syntax extensions. A common pattern in Scheme is to define one

macro in terms of several auxiliary macros but only export the main
macro. In our system, a syntax extension can be defined with the
help of other extensions, but clients of the one extension are not
forced to accept the auxiliary extensions. In Scheme, this is done
through the scoping of the macro name; in our system, grammars
control the extent of changes to nonterminals.

Finally, the entire syntactic abstraction system resides ulti-
mately in the APIs. Components are separately compiled; a com-
ponent can be compiled given only the relevant APIs. Syntactic
abstractions can refer to types, variables, and functions declared
in the API, and the references they produce in client components
are resolved based on the components the client is linked to. The
Scheme component system with macros in the signatures [13] is
arranged the same way and has similar hygiene properties.

9. Conclusion and Future Work
A growable language is one of the main ideas of the Fortress pro-
gramming language. The Fortress syntactic abstraction mechanism
serves a key role to support the language growth. It allows a user-
defined syntax to be indistinguishable from core Fortress syntax,
provides composition of independent macros, and supports mutu-
ally recursive macros using dynamic dispatches. The Fortress syn-
tactic abstraction mechanism is so flexible that various language
constructs can be moved from the core language syntax into li-
braries using macros.

Type checking macros is an interesting future direction. Be-
cause the syntactic abstraction mechanism described in this paper
is a template-based approach, it is possible to perform a more pre-
cise type checking than a multi-staged system where the transfor-
mation is represented as an explicit construction of the AST nodes.
The goal of type checking macros would be to provide the static
guarantee that if a macro definition is well typed then there is no
type error at the use sites of the macro unless the user of the macro
provides an input of a wrong type.

Acknowledgments
The authors sincerely thank the Fortress team for fruitful discus-
sions and support. Thanks to Robert Grimm for answering our
questions about Rats!, and thanks to the anonymous reviewers for
suggestions on improving the paper.

References
[1] Annika Aasa, Kent Petersson, and Dan Synek. Concrete syntax

for data objects in functional languages. In LISP and Functional
Programming, pages 96–105, 1988.

[2] H. Abelson, R.K. Dybvig, C.T. Haynes, G.J. Rozas, N.I. Adams
IV, D.P. Friedman, E. Kohlbecker, G.L. Steele Jr., D.H. Bartley,
R. Halstead, D. Oxley, G.J. Sussman, G. Brooks, C. Hanson, K.M.
Pitman, and M. Wand. Revised5 report on the algorithmic language
scheme. Higher-Order and Symbolic Computation, 11(1):7–105,
August 1998.

[3] Eric Allen, David Chase, Christine Flood, Victor Luchangco, Jan-
Willem Maessen, Sukyoung Ryu, and Guy L. Steele Jr. Project
Fortress Community website. http://www.projectfortress.
sun.com.

[4] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-
Willem Maessen, Sukyoung Ryu, Guy L. Steele Jr., and Sam
Tobin-Hochstadt. The Fortress Language Specification Version 1.0.
http://research.sun.com/projects/plrg/fortress.pdf,
March 2008.

[5] Claus Brabrand and Michael I. Schwartzbach. The metafront system:
Safe and extensible parsing and transformation. Science of Computer
Programming Journal (SCP), 68(1):2–20, 2007.

[6] Gilad Bracha. Executable grammars in newspeak. Electron. Notes
Theor. Comput. Sci., 193:3–18, 2007.

[7] Martin Bravenboer, Ren De Groot, and Eelco Visser. Metaborg
in action: Examples of domain-specific language embedding and
assimilation using stratego/xt. In Participants Proceedings of the
Summer School on Generative and Transformational Techniques in
Software Engineering (GTTSE05. Springer Verlag, 2005.

[8] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco
Visser. Stratego/XT 0.17. A language and toolset for program
transformation. Science of Computer Programming, 72(1-2):52–70,
June 2008. Special issue on experimental software and toolkits.

[9] Luca Cardelli and Florian Matthes. Extensible syntax with lexical
scoping. Technical report, Research Report 121, Digital SRC, 1994.

[10] Noam Chomsky. Three models for the description of language. IEEE
Transactions, 2(3), September 1956.

[11] William Clinger and Jonathan Rees. Macros that work. In POPL
’91: Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 155–162, New York,
NY, USA, 1991. ACM.

[12] The cola programming language. http://piumarta.com/
software/cola/.

[13] Ryan Culpepper, Scott Owens, and Matthew Flatt. Syntactic
abstraction in component interfaces. In Robert Glck and Michael R.
Lowry, editors, GPCE, volume 3676 of Lecture Notes in Computer
Science, pages 373–388. Springer, 2005.

[14] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic
abstraction in scheme. Lisp Symb. Comput., 5(4):295–326, 1992.

[15] Matthew Flatt. Composable and compilable macros: you want it
when? In ACM SIGPLAN International Conference on Functional
Programming, pages 72–83, 2002.

[16] Bryan Ford. Parsing expression grammars: a recognition-based
syntactic foundation. In POPL ’04: Proceedings of the 31st
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 111–122, New York, NY, USA, 2004. ACM.

[17] Robert Grimm. Practical packrat parsing. Technical report, New York
University, 2004.

[18] Robert Grimm. Better extensibility through modular syntax. In
PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on
Programming language design and implementation, pages 38–51,
New York, NY, USA, 2006. ACM.

[19] Jr. Guy L. Steele. Growing a language. Keynote talk, OOPSLA,
1998. Also published at Higher-Order and Symbolic Computation
12, 221–236, 1999.

[20] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The
syntax definition formalism sdf reference manual. SIGPLAN Not.,
24(11):43–75, 1989.

[21] Kenneth E. Iverson. A Programming Language. Wiley, 1962.

[22] Stephen C. Johnson. Yacc: Yet another compiler-compiler. Unix
Programmer’s Manual, 2b, 1979.

[23] Guy L. Steele Jr. Common Lisp the Language. Digital Press, 1984.

[24] E. E. Kohlbecker and M. Wand. Macros-by-example. In POPL
’87: Proceedings of the 14th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 77–84, New York, NY,
USA, 1987. ACM.

[25] Eugene E. Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and
Bruce F. Duba. Hygienic macro expansion. In ACM Symposium on
Lisp and Functional Programming, pages 151–161, 1986.

[26] G. D. Plotkin. A Structural Approach to Operational Semantics.
Technical Report DAIMI FN-19, University of Aarhus, 1981.

[27] Jonathan Riehl. Assimilating metaborg:: embedding language tools in
languages. In International Conference on Generative Programming
and Component Engineering, pages 21–28, New York, NY, USA,
2006. ACM.

[28] Sablecc. http://sablecc.org.

[29] Scheme frequently asked questions. http://community.
schemewiki.org/?scheme-faq-macros.

[30] Christopher Graham Seaton. A programming language where the
syntax and semantics are mutable at runtime. Master’s thesis,
Department of Computer Science, University of Bristol, United
Kingdom, May 2007.

[31] Michael Sperber, William Clinger, R. Kent Dybvig, Matthew Flatt,
Anton van Straaten, Richard Kelsey, and Jonathan Rees (Editors).
Revised6 report of the algorithmic language Scheme, September
2007. Available at http://www.r6rs.org.

[32] Squeak smalltalk. http://www.squeak.org/.

[33] The Unicode Consortium. The Unicode Standard, Version 5.0.
Addison-Wesley, 2006.

[34] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific
languages: An annotated bibliography. SIGPLAN Notices, 35(6):26–
36, 2000.

[35] Eelco Visser and Eelco Visser. Meta-programming with concrete ob-
ject syntax. In International Conference on Generative Programming
and Component Engineering, pages 299–315. Springer-Verlag, 2002.

[36] Oscar Waddell and R. Kent Dybvig. Extending the scope of syntactic
abstraction. In ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 203–215, 1999.

[37] Alessandro Warth and Ian Piumarta. Ometa: an object-oriented
language for pattern matching. In DLS ’07: Proceedings of the 2007
symposium on Dynamic languages, pages 11–19, New York, NY,
USA, 2007. ACM.

[38] Alessandro Warth and Ian Piumarta. Ometa: an object-oriented
language for pattern matching. In OOPSLA ’07: Companion to the
22nd ACM SIGPLAN conference on Object-Oriented Programming
Systems, Languages, and Applications, New York, NY, USA, 2007.
ACM Press.

[39] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver:
an extensible attribute grammar system. Electron. Notes Theor.
Comput. Sci., 203(2):103–116, 2008.

[40] Eric Van Wyk, Oege De Moor, Kevin Backhouse, and Paul
Kwiatkowski. Forwarding in attribute grammars for modular lan-
guage design. In Proc. 11th Intl. Conf. on Compiler Construction,
volume 2304 of LNCS, pages 128–142. Springer-Verlag, 2002.

